Chem. Ber. 119, 2723-2730 (1986)

Heterocyclische β -Enaminoester, 44¹⁾

2,3,3a,7a-Tetrahydrobenzofurane, -benzo[b]thiophen und 2,3,3a,7a-Tetrahydroindol durch Cycloaddition mit Cyanacetylen

Heinrich Wamhoff^{*a}, Franz-Josef Faßbender^{a 3)}, Dieter Hermes^a, Falk Knoch^b und Rolf Appel^b

Institut für Organische Chemie und Biochemie^a und Anorganisch-Chemisches Institut^b der Universität Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn 1

Eingegangen am 18. März 1986

Die (4,5-Dihydro-2-furyl- (1a-c), -2-pyrrolinyl- (1d) und -2-thienylimino (1e)triphenylphosphorane und das Furan- β -enaminonitril 1f ergeben mit zwei Molekülen Cyanacetylen die 2,3,3a,7a-Tetrahydrobenzofurane 2a-c, f, das 2,3,3a,7a-Tetrahydroindol 2d sowie das Benzo[b]thiophen 2e. Die Konstitution von 2b wird durch Röntgenstrukturanalyse ermittelt.

Heterocyclic β-Enamino Esters, 44¹⁾

2,3,3a,7a-Tetrahydrobenzofurans, -benzo[b]thiophene, and 2,3,3a,7a-Tetrahydroindole by Cycloaddition with Cyanoacetylene

With two molecules cyanoacetylene the (4,5-dihydro-2-furyl- (1 a - c), -2-pyrrolinyl- (1 d), and -2-thienylimino (1 e))triphenylphosphoranes and the furan β -enaminonitrile 1f afford the 2,3,3a,7a-tetrahydrobenzofurans 2a - c, f, the 2,3,3a,7a-tetrahydroindole 2d, and the benzo[b]thiophene 2e, respectively. The structure of 2b is established by X-ray diffraction.

Die Cycloadditions-Ringerweiterungs-Sequenz⁴⁾ von Iminophosphoranen heterocyclischer β -Enaminoester und β -Enaminonitrile mit Acetylenestern hat einen problemlosen und ergiebigen Zugang zu Dihydrooxepinen, Dihydrothiepinen, Dihydroazepinen, Dihydrothiocinen und neuerdings auch Dihydrooxocinen⁵⁾ eröffnet. Bereits früher war festgestellt worden⁶⁾, daß 4,5-Dihydro-5-methyl-2-(triphenylphosphoranylidenamino)-3-furancarbonsäure-ethylester (**1b**) mit Cyanacetylen⁷⁾ im Verhältnis 1:2 reagiert. Die Struktur des Adduktes **2b** wurde nun mit Hilfe einer Röntgenstrukturanalyse ermittelt.

Gemäß der ORTEP-Darstellung (Abb. 1) besitzt **2b** die Konstitution eines 2,3,3a,7a-Tetrahydrobenzofurans mit zwei vicinalen Nitrilgruppen an C-6,7. Wir mutmaßen, daß die durch Iminophosphoran- und Estergruppen stark polarisierte Enamin-Doppelbindung⁴) mit zwei Molekülen Cyanacetylen in einer selten beobachteten, rein thermisch verlaufenden [2 + 2 + 2]-Cycloaddition⁸) zum Primäraddukt A cyclisiert; A stabilisiert sich unter erneuter Umlagerung zum 2,3,3a,7a-Tetrahydrobenzofuran **2b**. Auf eine mögliche Parallelität zu einer

kürzlich gefundenen Indolsynthese⁹⁾ durch einen 6π -Elektronenringschluß eines intermediären Azonins¹⁰⁾ mit Indol-JIndol-Umlagerung sei verwiesen.

Abb. 1. ORTEP-Darstellung von 2b mit Bindungsabständen in Å (Standardabweichungen in Klammern)

Diese Ankondensierung eines Benzoringes an ein heterocyclisches Molekül scheint allgemein anwendbar zu sein; sie ist auf andere heterocyclische β -Enaminoester übertragbar. So entstehen aus den Dihydrofuranen 1a, c, dem Dihydropyrrol 1d und dem Dihydrothiophen 1e sowie aus dem Furan- β -enaminonitril 1f die Benzo[b]heterocyclen 2a, c, d, e und f.

UV (CHC13)			IR (KI	Br) [cm	-1]	³¹ P-NMR
	λ _{max} [nm]					(Solvens CDCl ₃ , ð-Werte ,
	(lg E)	C≇N	C=0	C=C	N=P	Standard 83% H ₃ PO ₄)
<u>2</u> a_	433 (4.20)	2220	1745	1595	1405	10.9
	272 (3.14)	2200		1495		
	262 (3.18)					
<u>2b</u>	435 (4.29)	2215	1740	1585	1400	11.5
	275 (3.19)	2195		1485		
	265 (3.22)					
≧⊆	438 (4.36)	2220	1745	1580	1400	10.3
	274 (3.20)	2190		1485		
	266 (3.23)					
<u> 4</u> 2	438 (3.82)	2200	1745	1585	1405	
		2205		1490		
2e	441 (3.90)	2200	1735	1585	1400	
	287 (3.36)	2240		1495		
	278 (3.40)					
2f	433 (3.70)	2200		1510	1390	
-	381 (3.19)	2240		1450		
	370 (3.13)	2260				

Tab. 1. UV-, IR- und ³¹P-NMR-Daten der Verbindungen 2a-f

Tab. 2. ¹H-NMR-Daten der Verbindungen 2a-f (Solvens CDCl₃, δ-Werte, J[Hz] in Klammern)

Verb.	H- 1	H-2	H-21	H-2**	H-3	H-5	H-7a	K−9	H - 10	H-13 - H-15	н-19	H-20
<u>2a</u>		3.85t (8 ^{a)})			2.40d (8 ^{a)})	4.55đ (1 ^{b)})	4.82d (1.8 ^{c)})			7.42 - 7.81m	4.15q (7 ^{a)})	1.04t (7 ^{a)})
<u>2b</u>		4.26d (8.2 ^{a)})	1.28t (6 ^{a)})		2.55m	4.57đ (0.4 ^{b)})	4.72đ (2 ⁰⁾)			7.46 - 7.86m	4.17q (7 ^a))	1.15t (7 ^{a)})
<u>2</u> c			1.25 (20 ⁴⁾	b	2.78dd	4.67đ (1 ^{b)})	4.85d (2 ^{C)})			7.48 - 7.88m	4.14q (7 ^{a)})	1.16t (7 ^a)
<u>2</u> d	2.40s	3.51 t (8 ²³⁾)			2.71t (8 ^{a)})	4.44đ (1 ^{b)})	5,119	7.31a (9 ^{a)})	7,77d (9 ^{a)})	7.48 - 7.71m		3.17s
<u>2e</u>		3.04t (7.8 ^{a)})			2.91t (7.8 ^{a)})	4.71s	4,71d (2.4 ^{c)})			7.51 - 7.89m	4.21q (10.5 ^{a)}	1.20t) (10.5 ^{a)})
<u>2f</u>		2.87t (6.6 ^{a)})			1.20t (6.6 a))	4,52d (0.6 ^{b)})	4.81d (1.8 ^{c8})			7.45 - 7.76m		

								1		ď	р	д	Ъб	Ъg	s
									C-20	14.11	14.11	14.08	52.69	14.0	19.98
(1 ⁴ 1)	с-8 С-8		ł	ł	.34.87s	1			c-19	66.26t	61.66t	61.73t	;	61.69t	1
) 2J, c) 3J, d	C - 7 a	9.08dd (^b 9.2	8.69dd 2.93 ^d)	7.82dd 2.1d)	2.21dd 1 3.19 ^d)	o.25dd 2.2 ^d)	9.07åå 2.34 ^å)		C-18	171.848	172.10s	171.45s	171.115	171.198	
in Klammern; ^{a) 1} J, ^{b)}	2-7	98.24s 7	98.11s 7 (98.27s 7 (00.67\$ 5 (00.44s 5	97.23\$ 7 (c-17	118.08s	118.27s	118.53s	117.61s	118.34s	117.235
	0 0-0	125.275	124.94s	125.468	125.77610	122.7051	125.63\$		c-16	116.405	116.565	116.595	116.13s	116.52s	115.68s
, J _{CP} [Hz]	C - 5	97.30dd (11.7 ^{c)})	97.06dd (⁽ 0.9 ^{c)})	98.33dd (11.7 ^{c)})	96.9544 11.56 ^c)	99.33dd (11.7 ^{cl})	97.00dd (11.15 ^{c)})		c-15	.33.11dd [3.0 ^d]	.33.23dd (3.0 ^{d)}	.33.12dd (3.0 ^d)	.33.16dd (2.9d)	.33.13dd (2.9d)	.33.43dd (2.9 ^d)
l ₃ , δ-Werte	C-4	162.75d (2.9b)	162.86d (3.9 ^b)	1_62.32d (2.9 ^b)	160.61d (2.5 ^b)	160.77d (2.9 4)	157.61d (1.17 ^b)		-14	12.36dd 1 0.2 ^{cl})	12.20dd 1	12.40dd 1	12.33dd 1	12.45dd 1	12.43dd 1
ens CDC	C-3a	62.10d (22.7 ^c)	62.63d (23.4 ^d)	62.89d (21.9 ^d)	123.99 م)	63.83d (23.43c)	49.49d (23.77 ^{cl})		3 C	.32dd 13 5b) (1	.26dd 13	26dd 13	.28dd 13 .3b) (1	.29dd 13 (d.b) (1	.05dd 13
-f (Solv	с- Э	37.55t	15.09t	18.65d	34.08t	28.61t	39.85 t		c-1	ວd 129. 3a ¹) (12.	5d 129. 7a) (12.	7d 129.	2d 129.	7d 129. al) (12.	əd 129. /al) (12.
n von 2a	c-2.			9.10g		1			c-12	127.4(127.2((101. ⁻	127.0	128.7 (94.7 ⁴	126.9 ⁻ (101.0	126.19 (101.3
MR-Date	c-2,	1	20 . 36q	28 . 00g 2	1	}	1		c-11	1		!	143.785	1	!
3. ¹³ C-N	C-2	51.73t	73.21d 2	30.27s 2	15.54t	39.62t	55.81t		c-10	1	ł		128.08d	1	
Tab	c-1	-			21-56g ·				c-9	4 9 1	1	ļ	125.77d	-	1
		<u>2a</u>	<u>2b</u>	<u>2c</u>	2d	<u>2e</u>	2£			2a	2p	20	24	2e	2f

Während 2a-c sogleich in reiner Form anfallen, werden 2d-f erst nach Säulenchromatographie erhalten. Die Konstitutionen von 2a-f werden durch die spektroskopischen Daten gestützt. In den ¹H-entkoppelten ¹³C-NMR-Spektren ist die ¹³C-³¹P-Kopplung besonders wertvoll bei der Zuordnung der Signale: neben den aromatischen C-Atomen sind die Signale von C-3a, C-4, C-5 und in einigen Fällen auch von C-7a durch diese Kopplung leicht erkennbar; hierbei gilt: ³J_{C,P} > ²J_{C,P}. In den ¹H-NMR-Spektren erweist sich in gleicher Weise die ¹H-³¹P-Heterokopplung als hilfreich in der Zuordnung der Signale: dabei zeigt 7a-H durchweg eine doppelt so große Aufspaltung (⁵J_{H,P} = 1 Hz). Die Benzo[b]heterocyclen besitzen ein ausgedehntes π -Elektronensystem; in den UV-Spektren findet man dementsprechend die längstwellige Absorptionsbande bis in den sichtbaren Bereich verschoben (siehe Tabellen 1-3).

Diese neuartige Anellierungsmethode aus zwei Acetylenbausteinen und einem hochpolarisierten Enaminocarbonyl(nitril)-System ergänzt zusammen mit der kürzlich gefundenen Indolsynthese^{9a)} einige neuere Methoden zur Darstellung von Indolen^{9a,b,10)} sowie Benzofuranen und Benzo[b]thiophenen¹¹.

Dem Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen, dem Fonds der Chemischen Industrie sowie der Bayer AG danken wir für die Unterstützung der Arbeit. - F.-J. F. dankt der Hanns-Seidel-Stiftung für ein Promotionsstipendium.

Experimenteller Teil

IR-Spektren: Perkin-Elmer 157-G. – UV-Spektren: Cary-17. – ¹H-NMR-Spektren: Bruker WH-90. – ¹³C-NMR-Spektren: Bruker WP-90, TMS als interner Standard. – MS: MS-30 und MS-50 von Kratos (AEI). – Schmelzpunkte: nicht korrigiert. – Elementaranalysen: Analytische Abteilung des Instituts und Mikroanalytisches Laboratorium Dr. F. Pascher, Bonn.

Modifizierte Vorschrift zur Darstellung von Cyanacetylen: In Anlehnung an Lit.⁷ werden 4.0 g (57 mmol) Propiolamid mit 12 g Diphosphorpentoxid in einem Mörser innigst verrieben; alsdann wird diese Mischung in einen mit einer Destillationsbrücke versehenen 250ml-Kolben übergeführt und im Metallbad auf ca. 180°C erhitzt (Vorlage wird auf 5°C gekühlt). Die Dehydratation setzt ein, und das Cyanacetylen destilliert ab; Sdp. 41°C (Lit.^{7a)} 40-42°C); Ausb. 2.1 g (70%) (Lit.^{7a)} 65%).

Allgemeine Vorschrift zur Darstellung der Benzo[b]heterocyclen 2a-f: Die Lösung von 5.0 mmol der Iminophosphorane 1a-f in 150 ml absol. Acetonitril wird auf 0°C gekühlt. Sodann werden 0.50 g (10 mmol) Cyanacetylen in 50 ml absol. Acetonitril langsam, innerhalb 0.5 h, zugetropft. Dann rührt man 2 h bei Raumtemp. und entfernt das Solvens i. Vak. Der schwarze Rückstand wird in Ethanol aufgenommen und die Lösung heiß filtriert. Im Falle von 2a-c fällt das Produkt in Form leuchtend gelber Kristalle aus. Bei 2d-f ist eine chromatographische Trennung (System Petrolether 40-60°C/Aceton 2:1, v/v) erforderlich (Analyt. Daten siehe Tab. 4).

Strukturbestimmung von $2b^{12}$: Das 2,3,3a,7a-Tetrahydrobenzofuran 2b wird durch Kristallisation aus einer ethanolischen Lösung geringer Konzentration (0.5 mg, 1 mmol, 2b in 30 ml Ethanol) erhalten, wenngleich sich nur relativ kleine Kristalle mit geringem Streuvermögen für die Röntgenstrukturanalyse eigneten.

usb. [%] Summenformel Molmasse C H N	81 C ₃₁ H ₃₈ N ₃ O ₃ P 519 Ber 71.66 5.04 8.08	78 C ₃₂ H ₂₈ N ₃ O ₃ P 533 Ber. 72.03 5.28 7.87	80 C ₃₁ H ₃₀ N ₃ O ₃ P 547 Ber 72.38 5.52 7.67	55 C ₃₇ H ₃₁ N ₄ O ₄ PS 658 Ber. 67.47 4.74	15 C _{J1} H ₃₆ N ₃ O ₂ PS 535 Ber. 69.52 4.89	15 C ₂₉ H ₂₁ N ₄ OP 472 Ber. 73.72 4.48
imp. [°C] (Molmasse) (MS) C H N	201 (519.5) Geff 71.33 5.13 8.21	219 (533.5) Gef. 72.18 5.14 7.46	205 (347.5) Gef. 72.27 5.55 7.77	229 (658.7) Gef. 67.15 4.85	168 (535.6) Gef. 69.03 5.06	91 (472.4) Gef. 73.16 5.17
Tab. 4. Analytische Daten von 2a-f Name Ausb. [%] Summenformel Name Schmp. [°C] (Molmassc)	 6,7-Dicyan-2,3,3a,7a-tetrahydro-4 6,7-Dicyan-2,3,3a,7a-tetrahydro-4 81 C₃₁H₃₈N₃O₃P benzofuran-3a-carbonsäure-ethyl- ester 	(b 6,7-Dicyan-2,3,3a,7a-tetrahydro-2-me- thyl-4-(triphenylphosphoranyliden- amino)benzofuran-3a-carbonsäure- ethylester	 6,7-Dicyan-2,3,3a,7a-tetrahydro-2,2- 80 C₃₁H₃₀N₃O₃P dimethyl-4-(triphenylphosphoranyl- 205 (347.5) idenamino)benzofuran-3a-carbon- säure-ethylester 	 6,7-Dicyan-2,3,3a,7a-tetrahydro-1-(4-55 C₃)H₃,N₄O₄PS methylphenylsulfonyl)-4-(triphenyl-229 (658.7) phosphoranylidenamino)-3a-indol- carbonsäure-methylester 	 6,7-Dicyan-2,3,3a,7a-tetrahydro-4(tri- 15 C₃₁H₃₆N₃O₂PS phenylphosphoranylidenamino)- 168 (535.6) benzo[b]1thiophen-3a-carbonsäure- ethylester 	1f 2,3,3a,7a-Tetrahydro-4-(triphenyl- phosphoranylidenaminolbenzo- furan-3a,6,7-tricarbonitril 15 C ₂₉ H ₂₁ N ₄ OP 91 (472.4)

Die Datensammlung erfolgte auf einem Vierkreisdiffraktometer (Nicolet R 3 m) mit graphit-monochromatisierter Mo- K_{α} -Strahlung ($\lambda = 71.069$ pm). Insgesamt wurden 5539 Reflexe vermessen, von denen 2116 mit $F > 4\sigma(F)$ "beobachtet" wurden. Die Strukturlösung erfolgte mittels Direkter Methoden (SHELXTL¹³), wobei die Nichtwasserstoffatome anisotrop verfeinert sind. Die Lage der aromatischen H-Atome wurde für ideale Geometrie berechnet und bei der Verfeinerung festgehalten. Die Wasserstoffatome der Methyl- und Methylengruppen wurden für ideale Tetraeder berechnet und als starre Gruppen verfeinert. Die Temperaturfaktoren von C9 (0.19), C13 (0.18) und C14 (0.24) sind relativ groß, was für Atome an der Molekülperipherie häufig auftritt. Der verkürzte Abstand C13-C14 (1.40 Å) deutet darauf hin, daß dieser Effekt beginnt, in eine Fehlordnung überzugehen.

Kristallgröße (mm) $0.4 \times 0.1 \times 0.1$; Kristallsystem monoklin; Raumgruppe $P_{2_1/n}$; Summenformel C₃₂H₂₈N₃O₃P; Molekülmasse 533.3; a = 1836.6(6), b = 791.8(2), c = 1995.3(7) pm; $\beta = 98.62(3)^{\circ}$; $V = 2.8717(3) \cdot 10^{9}$ pm³; $d_{r,ber.} = 1.23$ g·cm⁻³; Z = 2; vermessener Bereich $3^{\circ} < 2\Theta < 48^{\circ}$; unabhängige von Null verschiedene Reflexe 5539; Anzahl "beobachteter" Reflexe ($F > 4\sigma(F)$) 2116; Anzahl der verfeinerten Parameter 371; R = 0.109; R_w ($w = 1/\sigma^2$) = 0.084.

Tab. 5. Ortskoordinaten der Atome von 2b (Standardabweichungen in Klammern)

Atom	x	У	Z	Atom	x	У	z
Atom P(1) C(25) C(24) C(22) C(21) C(20) C(35) C(34) C(33) C(32) C(31) C(30) C(45) C(44) C(43)	x 7015 (1) 5599 (5) 5098 (5) 5905 (6) 6480 (5) 6305 (5) 8270 (4) 8629 (4) 8629 (5) 8254 (6) 7488 (5) 7131 (5) 7494 (4) 6469 (5) 6108 (5) 5871 (4)	y 3345(3) 3950(13) 4886(13) 6370(13) 6977(13) 6075(11) 4521(10) 2304(11) 1450(12) 660(13) 691(12) 1509(11) 2310(10) 162(11) -972(12) -551(12)	z 4534 (1) 3872 (5) 3477 (6) 3214 (5) 3788 (4) 4046 (4) 4018 (4) 3562 (4) 3020 (4) 2933 (5) 3382 (4) 3933 (4) 4779 (4) 5146 (4)	Atom C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) O(1) C(9) C(10) N(2) C(11) N(3) C(12) O(2)	x 8024 (4) 8335 (4) 8905 (4) 9189 (4) 8860 (5) 8258 (5) 7584 (5) 7800 (7) 8433 (4) 7355 (8) 9225 (4) 9510 (4) 9570 (4) 8567 (5) 8310 (4)	¥ 4420(9) 2926(9) 2885(9) 4244(11) 5982(13) 6083(10) 6729(18) 7450(17) 6350(9) 7501(16) 1305(10) 33(9) 4211(10) 4205(10) 7109(11) 8504(9)	z 5543 (4) 5787 (3) 6334 (4) 6552 (4) 5910 (4) 6205 (5) 6847 (7) 7135 (3) 7395 (7) 6659 (4) 7242 (4) 7679 (4) 5407 (5) 5273 (3)
C(42) C(41) C(40) N(1)	6019 (6) 6377 (5) 6595 (4) 7486 (3)	1040 (13) 2201 (12) 1772 (11) 4693 (8)	5956 (5) 5585 (5) 4993 (4) 5009 (3)	O(3) C(13) C(14)	9154 (4) 9459 (7) 9095 (7)	6465(9) 7396(21) 6994(18)	5229 (4) 4725 (6) 4081 (6)

CAS-Registry-Nummern

1a: 86300-01-8 / 1b: 86300-00-7 / 1c: 86299-98-1 / 1d: 96325-51-8 / 1e: 86300-05-2 / 1f: 103148-84-1 / 2a: 103148-78-3 / 2b: 103148-79-4 / 2c: 103148-80-7 / 2d: 103148-81-8 / 2e: 103148-82-9 / 2f: 103148-83-0 / Cyanacetylen: 1070-71-9 / Propiolamid: 7341-96-0

- ¹⁾ 43. Mitteilung: H. Wamhoff und J. Bohlen, Magn. Reson. Chem. 1986, im Druck. -Zugleich 11. Mitteilung der Reihe: Heterocyclensynthesen mit Dihalogentriphenylphosphoranen; 10. Mitteilung: Lit.²⁾.
- ²⁾ H. Wamhoff und W. Schupp, J. Org. Chem. **51** (1986), im Druck. ³⁾ Aus den Dissertationen F.-J. Faßbender und D. Hermes, Univ. Bonn 1986/87.
- ⁴⁾ H. Wamhoff, G. Haffmanns und H. Schmidt, Chem. Ber. 116, 1691 (1983); H. Wamhoff und G. Haffmanns, ebenda 117, 585 (1984); H. Wamhoff und G. Hendrikx, ebenda 118, 863 (1985).
- ⁵⁾ H. Wamhoff, F.-J. Faßbender und J. Paasch, Chem. Ber., in Vorbereitung.
- ⁶⁾ G. Haffmanns, Diplomarbeit, Univ. Bonn 1978.
- ^(1) 7a) W. E. Truce und M. L. Gorbaty, J. Org. Chem. 35, 2113 (1970). ^{7b)} S. Murahashi, T. Takizawa, S. Kurioka und S. Maekawa, J. Chem. Soc. Jpn. 77, 1869 (1956) [Chem. Abstr. **53**, 5165 (1956)].
- ⁸⁾ Vgl. K. P. C. Vollhardt, Angew. Chem. 96, 525 (1984); Angew. Chem., Int. Ed. Engl. 23, 539 (1984), und dort zitierte Literatur.
- 9) 9a) H. Wamhoff, F.-J. Faßbender, G. Hendrikx, H. Puff und P. Woller, Chem. Ber. 119, 2114 (1986); siehe auch dort zitierte Literatur über neuere Indolsynthesen. - ^{9b)} A. P. Kozikowski und X.-M. Cheng, Tetrahedron Lett. 26, 4047 (1985).
- ¹⁰⁾ In ähnlicher Weise entstehen Indole durch [2 + 2]-Cycloaddition an die 4,5-Doppelbindung eines 1H-Azepins, nachfolgende photoinduzierte Ringerweiterung zum Azonin und 6π-Elektronenringschluß: H. D. Martin und M. Hekmann, unveröffentlicht.
- ¹¹⁾ Vgl. Th. Wagner-Jauregg, Synthesis 1980, 165, 769ff., und dort zitierte Literatur; T. Sasaki, Y. Ishibashi und M. Ohno, J. Chem. Res. (S) 1984, 218; (M) 1984, 1972; T. J. Barton und B. L. Groh, J. Org. Chem. 50, 158 (1985).
- ¹²⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51820, des Autors und des Zeitschriftenzitats angefordert werden.
- ¹³⁾ G. M. Sheldrick, SHELXTL. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data, Univ. Göttingen 1978; G. M. Sheldrick, SHELXTL User Manual. Nicolet XRD Corporation, Freemont/California 1981.

[62/86]